

Training a Deep Q-Network to Master Uno: A Comprehensive Study in Reinforcement Learning for Imperfect Information Games

Mohammed Alshehri
`mohammed@redec.io`

February 2, 2026

Abstract

We study Deep Q-Network (DQN) learning for Uno, an imperfect-information card game with stochastic transitions and a variable legal action set. We introduce a fixed-dimensional state encoding and a masked discrete action encoding, and train the agent using tournament-based experience collection.

Using 100,000 random-play simulations, we report baseline game statistics and evaluate the learned agent against API-served LLM opponents. Because LLM endpoints may change over time, these results are conditional on the specific model identifiers and access configuration.

Principal finding: Our DQN agent achieves an 80% win rate against Gemini 3 Flash and GPT 5.2 in our evaluation harness, but only a 20% win rate against Opus 4.5.

Keywords: reinforcement learning; DQN; imperfect information; card games; evaluation; large language models

1 Introduction and Motivation

1.1 The challenge of imperfect information games

Card games are a standard benchmark for decision-making under uncertainty. Unlike perfect-information games (e.g., Chess, Go), Uno introduces: **imperfect information** (opponents' hands are hidden), **stochastic transitions** (shuffling and drawing induce randomness), **variable action spaces** (legal actions change with the top discard card and the hand), and **delayed rewards** (local actions may have long-term consequences).

This work builds on deep reinforcement learning methods for control (Mnih et al., 2015) and subsequent improvements in stabilizing value-based learning (Hasselt, Guez, and Silver, 2016).

1.2 Research objectives

We pursue four objectives: (1) statistical characterization of baseline play; (2) implementation and training of a DQN agent; (3) comparative evaluation against random baselines and frontier LLMs; and (4) deployment of an interactive web interface for demonstration.

1.3 Contributions

Our contributions include (i) a fixed-dimensional state encoding, (ii) tournament-based experience collection, (iii) empirical comparisons versus LLM-based opponents, and (iv) a deployable system design.

2 Problem setting and rules

2.1 Two-player Uno variant

We study a two-player version of Uno. The game is played with a standard Uno deck and proceeds in alternating turns until one player plays their final card. Special action cards modify turn order or force draws; wild cards allow the acting player to declare the next active color. For baseline rule definitions we follow the official Uno instructions (Mattel, n.d.). *Implementation note:* Uno has rule variants (e.g., stacking draw cards); therefore, any empirical results in this paper should be interpreted with respect to the specific rules implemented in our codebase (mohammed840, 2026).

2.2 Learning problem formulation

We model the environment as a partially observable sequential decision problem: the agent observes its private hand and public information (e.g., discard top card) but not the opponent’s hand (Kaelbling, Littman, and Cassandra, 1998). We train the agent using episodic win/loss feedback as the primary learning signal.

3 Related work

Deep reinforcement learning for control with value-based methods has been widely studied, including the original DQN formulation (Mnih et al., 2015) and Double DQN (Hasselt, Guez, and Silver, 2016). Multiple stabilisation and performance extensions have been proposed, including dueling networks (Wang et al., 2016), prioritised experience replay (Schaul et al., 2016), and combined variants such as Rainbow (Hessel et al., 2018). For card-game research and benchmarking, RLCard provides a general-purpose toolkit (Zha et al., 2019).

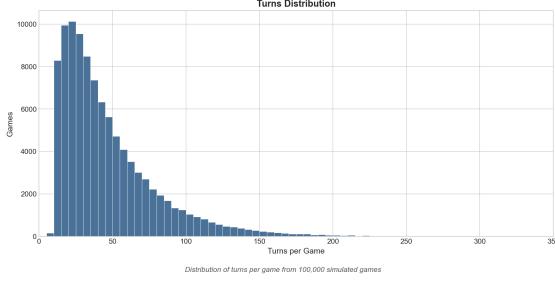


Figure 1: Turns-per-game distribution from 100,000 simulated Uno games under uniformly random legal play.

3.1 Reinforcement learning in imperfect information games (context)

A large body of work addresses imperfect information games using equilibrium-seeking methods. Neural Fictitious Self-Play (NFSP) combines deep reinforcement learning with fictitious play to approximate Nash equilibria in large games ([heinrich2016nfsp](#)). Counterfactual Regret Minimization (CFR) and its variants compute approximate equilibria by minimizing counterfactual regret over a game tree ([zinkevich2007cfr](#)). For poker, systems such as DeepStack and Libratus combine regret minimization with learned value approximators and real-time subgame solving ([moravcik2017deepstack](#); [brown2017libratus](#)).

In this work we adopt a simpler value-based approach (DQN/Double DQN) with explicit legality masking, and evaluate primarily against fixed opponents (random, heuristic, and API-served LLM agents) rather than targeting equilibrium play.

A course report by Brown, Jasson and Swarnakar (Brown, Jasson, and Swarnakar, 2020) also explores Uno with DQN and DeepSARSA in an RLCard-based environment, focusing on multi-player games (3–5 players) and tournament-style experience collection.

4 Game Statistics from Large-Scale Simulations

4.1 Experimental setup

We simulated 100,000 games under uniformly random legal play. For each episode we recorded total turns to termination, the starting player, and per-player counts of cards played and drawn. Our implementation is compatible with standard card-game RL toolkits (Zha et al., 2019).

4.2 Game length distribution

Figure 1 visualizes the empirical episode-length distribution used to calibrate training horizons. The pronounced right tail indicates that while many games finish quickly, a non-negligible fraction of episodes are substantially longer, which motivates reporting both central tendency and tail statistics.

Summary statistics (random baseline):

Statistic	Value
Mean	46.5 turns
Median	37.0 turns
Mode	13 turns
Standard deviation	33.8 turns
Minimum	7 turns
Maximum	418 turns

4.3 Percentile analysis

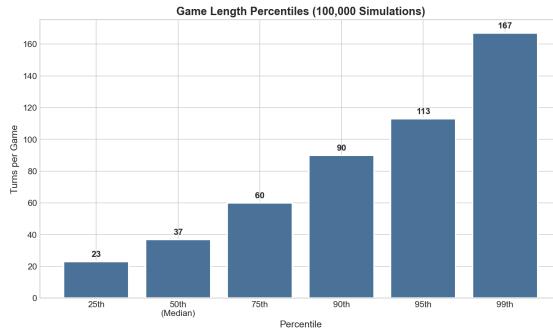


Figure 2: Turns-per-game percentiles from 100,000 random simulations.

Figure 2 complements the histogram by summarizing the episode-length distribution at selected quantiles, which is often more stable than single-point summaries such as the mean.

Percentile	Turns	Interpretation
25th	23	25% of games complete by this point
50th (median)	37	Half of games complete
75th	60	Three quarters of games complete
90th	90	Only 10% exceed this length
95th	113	Long games (5% tail)
99th	167	Extreme tail (1%)

These percentiles informed our choice of discount factor $\gamma = 0.95$, which appropriately weights future rewards across typical game horizons.

4.4 Cumulative distribution function

Figure 3 provides a cumulative view of episode length; for example, the value at x turns corresponds to the fraction of games that terminate within x turns.

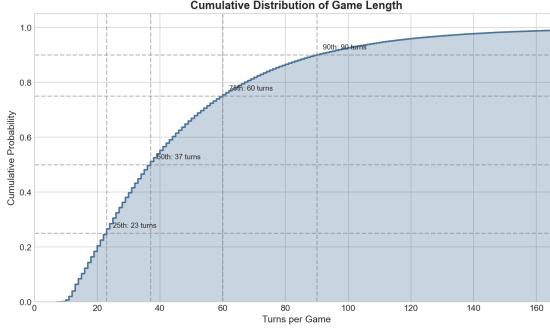


Figure 3: Cumulative distribution function (CDF) of turns per game from 100,000 simulations.

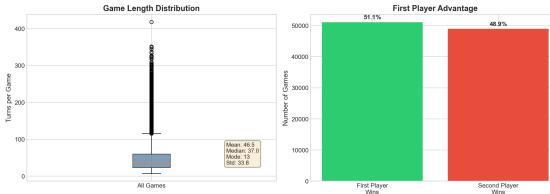


Figure 4: Game-length summary and first-player advantage analysis (random baseline).

4.5 First-player advantage

Figure 4 summarizes variability in episode length and reports the estimated advantage of moving first under random play, which serves as a basic sanity check for the simulator and a reference point for learned agents.

We observe a modest first-player advantage: first player wins 51.07% of games (51,068 / 100,000).

5 Deep Q-Network (DQN) Architecture

5.1 Overview and design rationale

Deep Q-Networks (DQN) learn a parametric approximation $Q(s, a; \theta)$ to the optimal action-value function and are well suited to environments with (i) large or continuous observation spaces and (ii) discrete actions (Mnih et al., 2015). In our setting, the observation is a fixed-length 420-dimensional feature vector (Section 5), while the action set is a 61-way discrete encoding with dynamic legality constraints (Section 6).

Two practical challenges are central in Uno: (a) *stochasticity and partial observability* (hidden opponent hand and random draws), and (b) *variable legal actions*. To address (b), we explicitly apply an *action mask* at decision time so that the policy never selects illegal actions.

5.2 Theoretical foundation

DQN builds on the Bellman optimality equation for Markov decision processes:

$$Q^*(s, a) = \mathbb{E} \left[r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1}, a') \mid s_t = s, a_t = a \right]. \quad (1)$$

Given a transition tuple $(s_t, a_t, r_{t+1}, s_{t+1})$, the *one-step TD target* used by DQN is

$$y_t = r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a'; \theta^-), \quad (2)$$

where θ^- denotes parameters of a slowly-updated *target network* that stabilises learning (Mnih et al., 2015).

We minimise the squared TD error over samples drawn from a replay buffer:

$$\mathcal{L}(\theta) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} \left[(y - Q(s, a; \theta))^2 \right]. \quad (3)$$

Double DQN target (reduced overestimation). In standard DQN, the maximisation in y_t can introduce positive bias (“overestimation”). We therefore use the Double DQN decomposition, selecting the greedy action under the online network but evaluating it with the target network (Hasselt, Guez, and Silver, 2016):

$$y_t^{\text{DDQN}} = r_{t+1} + \gamma Q \left(s_{t+1}, \arg \max_{a'} Q(s_{t+1}, a'; \theta); \theta^- \right). \quad (4)$$

5.3 Experience replay and target network

DQN uses two key stabilisation mechanisms (Mnih et al., 2015): **Experience replay**. Transitions are stored in a replay buffer \mathcal{D} and mini-batches are sampled uniformly during training; this breaks short-term temporal correlations and improves sample efficiency.

Target network. A separate network with parameters θ^- is updated periodically (every C gradient steps) from the online network parameters θ , reducing non-stationarity of TD targets.

5.4 State representation

We encode the game state as a 420-dimensional feature vector structured as 7 planes of 60 features each (4 colors \times 15 card types). This representation is designed to be (i) fixed-dimensional, (ii) permutation-invariant with respect to hand order, and (iii) directly aligned with Uno’s public and private information.

Detailed encoding scheme:

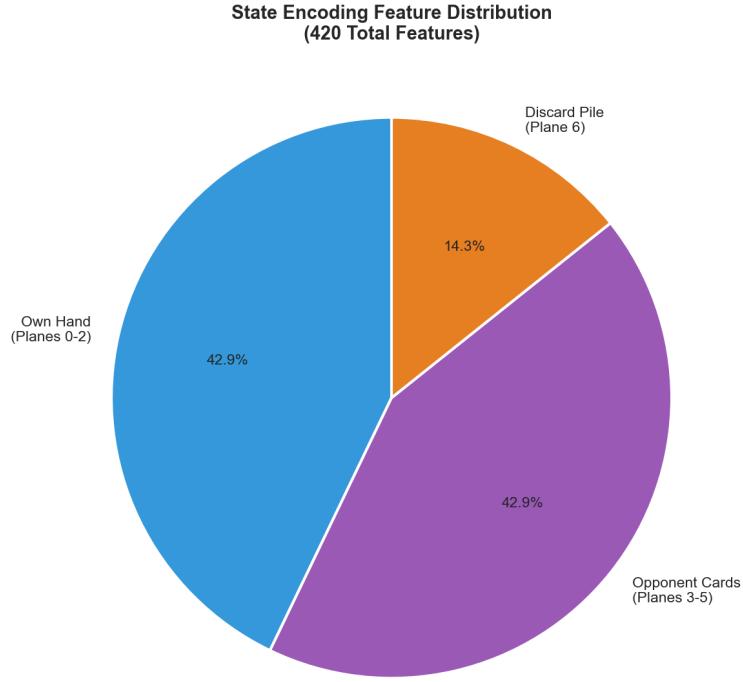


Figure 5: Distribution of the 420 state features across information categories.

Planes	Features	Description
0–2	180	Own hand card-count buckets (0, 1, 2+ copies)
3–5	180	Estimated opponent card counts (0, 1, 2+)
6	60	Current discard pile top card (one-hot)
Total	420	Complete state representation

Why bucketed counts? We use (0, 1, 2+) buckets rather than raw counts to keep the input scale bounded and to emphasise strategically relevant distinctions (e.g., “have at least one playable card type” versus “none”). In a two-player setting, a coarse opponent model (estimated counts) is often sufficient to induce defensive play (e.g., holding wild cards) without requiring full belief-state inference.

Opponent-estimation transparency. Planes 3–5 estimate opponent card distributions using only publicly observable information (cards played, the number of draws, and deck-card conservation). Our implementation performs this tracking in the encoder utilities (e.g., `uno/encoding.py`); critically, it never accesses the opponent’s private hand contents (mohammed840, 2026).

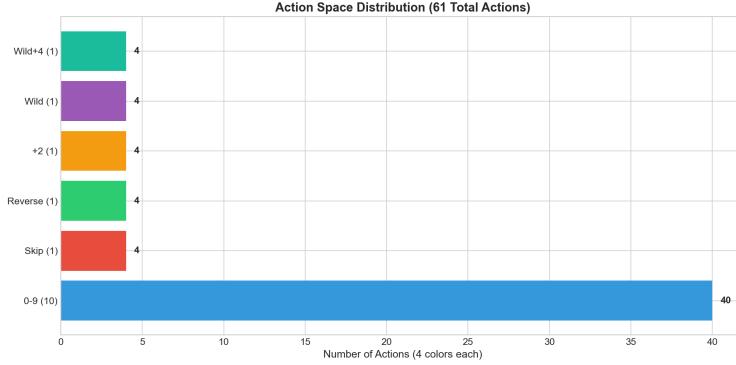


Figure 6: Breakdown of the 61-action space.

5.5 Action space and legality masking

The action space consists of 61 discrete actions representing all possible moves; illegal actions are masked during action selection.

Action range	Count	Description
0–39	40	Number cards ($0–9 \times 4$ colors)
40–43	4	Skip (4 colors)
44–47	4	Reverse (4 colors)
48–51	4	Draw Two (4 colors)
52–55	4	Wild (declare 4 colors)
56–59	4	Wild Draw Four (declare 4 colors)
60	1	Draw from deck

Let $m(s) \in \{0, 1\}^{61}$ be a binary mask indicating action legality in state s . During greedy action selection we compute

$$a^* = \arg \max_a \left(Q(s, a; \theta) + (1 - m_a(s)) \cdot (-\infty) \right), \quad (5)$$

which guarantees that illegal moves are never chosen.

Masking in the TD target. In addition to masking during action selection, we also mask illegal actions when computing the bootstrap term in the TD target. Concretely, before taking $\max_{a'}$ over next-state actions, we set the Q-values of illegal actions to a large negative constant so they cannot become the maximizer (mohammed840, 2026).

```
# Next-state bootstrap with legality masking
next_q = q_target(next_states) # (B, 61)
next_q = next_q - (1 - next_legal_masks) * 1e9
next_q_max = next_q.max(dim=1) [0]

y = rewards + gamma * next_q_max * (1 - dones)
```

5.6 Network architecture

Our Q-network maps 420 input features to 61 Q-values using a fully-connected multilayer perceptron. This choice is appropriate because the observation is already a compact, hand-crafted vector rather than an image.

Architecture summary. Input: 420 → Hidden: 512 (ReLU, Dropout 0.1) → Hidden: 512 (ReLU, Dropout 0.1) → Output: 61 (linear). Optimizer: Adam with learning rate 10^{-4} .

Regularisation and optimisation details. Dropout provides mild regularisation against overfitting to early replay-buffer distributions. In addition, common DQN stabilisation practices include gradient clipping and the use of a robust loss (Huber) (Mnih et al., 2015). (We report the MSE objective above for clarity; in practice, replacing MSE with Huber is a drop-in change.)

5.7 Relation to common DQN extensions (context)

Several extensions to DQN can further improve stability and performance, including dueling networks (Wang et al., 2016), prioritised experience replay (Schaul et al., 2016), and combined “Rainbow” variants (Hessel et al., 2018). We retain a relatively simple architecture to keep the Uno pipeline reproducible, and focus our improvements on state encoding, action masking, and tournament-style experience collection.

6 Training Methodology

6.1 Tournament-based experience collection

Each training iteration aggregates experience over a tournament of N complete games, improving stability and diversifying trajectories.

7 Experiments and reproducibility

7.1 Experimental protocol

All experimental results in this paper are conditional on the ruleset and experimental protocol implemented in the accompanying codebase (mohammed840, 2026). In our implementation, training uses fixed random-policy opponents in a two-player setting (the learning agent is always player 0), and the reward is terminal only (+1 for win, -1 for loss, 0 otherwise).

7.2 Metrics and reporting

We report (i) win rate and average reward for tournament-style evaluation, and (ii) summary statistics of game length (turns per game) under random play. The code writes training metrics to `runs/<run_id>/metrics_train.csv` and evaluation metrics to `runs/<run_id>/metrics_eval.csv` (mohammed840, 2026).

7.3 Reproducibility checklist

Random seeds. Training and evaluation set seeds for NumPy and PyTorch; the environment is also initialised with a seed parameter (mohammed840, 2026).

Artifacts. Each run stores `config.json`, per-iteration tournament logs (`tournaments/dqn_iter_<i>.jsonl`), and plots under `runs/<run_id>/plots/` (mohammed840, 2026).

LLM evaluation. OpenRouter opponents are specified by model slugs (e.g., `google/gemini-3-flash-preview`, `openai/gpt-5.2`, `anthropic/clause-opus-4.5`) and queried with `max_tokens=50` and `temperature=0.1` in our adapter (mohammed840, 2026).

7.4 Hyperparameter configuration

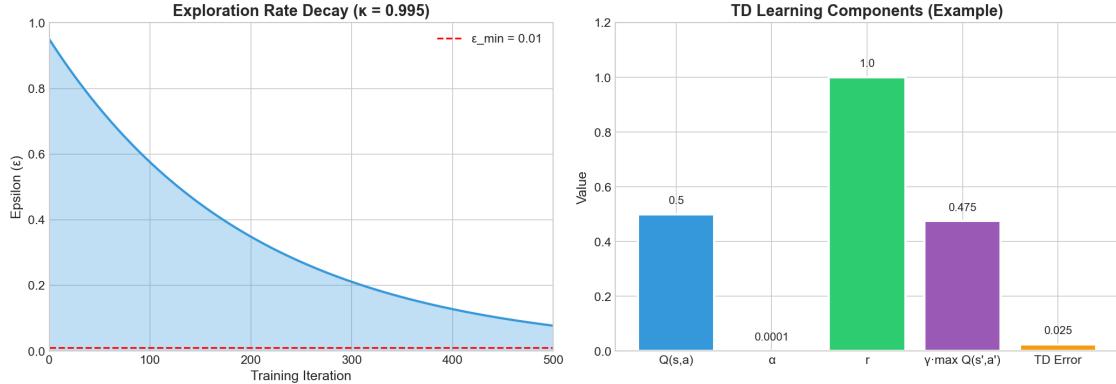


Figure 7: Exploration rate decay and temporal-difference learning components (illustrative).

Figure 7 summarizes key training signals, in particular the exploration schedule that transitions from broad exploration to more exploitative play as the replay buffer grows.

Hyperparameter	Value	Rationale
Learning rate (α)	10^{-4}	Stable learning without oscillation
Discount factor (γ)	0.95	Appropriate for ~ 40 -turn games
Initial epsilon (ε_0)	0.95	High initial exploration
Epsilon decay (κ)	0.995	Gradual transition to exploitation
Minimum epsilon (ε_{\min})	0.01	Maintain exploration
Batch size	256	Efficient GPU utilization
Replay buffer size	100,000	Experience diversity
Target update frequency	100	Stabilize TD targets
Games per iteration	100	Tournament size

7.5 Training dynamics

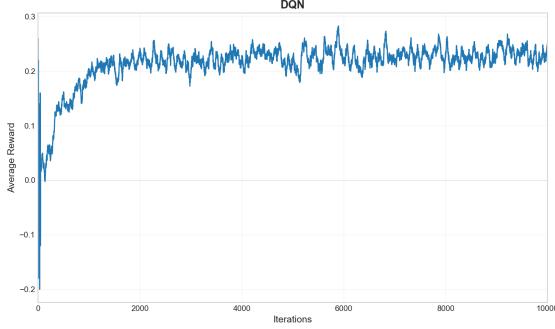


Figure 8: Average reward over 10,000 training iterations (100 games per iteration; 1,000,000 games total).

Figure 8 reports the evolution of training reward, which serves as a coarse indicator of policy improvement and training stability over iterations. Over 10,000 iterations, the agent improves from negative average reward to stable positive performance around +0.22.

Final evaluation versus random play (sanity check).

Metric	Our model	Reference report	Difference
Win rate vs. random	61.8%	62.2%	-0.4%
Average reward	+0.236	+0.244	-0.008
Training games	1,000,000	$\sim 350,000$	+185%
Algorithm	Double DQN	DQN	—

The reference values are taken from the Uno reinforcement learning course report baseline (Brown, Jasson, and Swarnakar, 2020).

8 Evaluation: RL Agent vs. Large Language Models

8.1 Experimental design

We evaluate the trained agent in head-to-head tournaments against multiple LLM opponents accessed via an API, focusing on win-rate as the primary metric.

Protocol. For each opponent configuration, we run 100 games (consistent with the win/loss counts reported in Table 1). In our evaluation harness, the learning agent is player 0 and the starting player is determined by the environment reset; we do not explicitly force alternation of the starting player. The LLM opponents are accessed through an external API gateway; in our implementation we use OpenRouter (OpenRouter, n.d.). We use the OpenRouter model identifiers `google/gemini-3-flash-preview`, `openai/gpt-5.2`, and `anthropic/clause-opus-4.5`, queried with `temperature=0.1` and `max_tokens=50` (mohammed840, 2026).

8.2 Tournament results

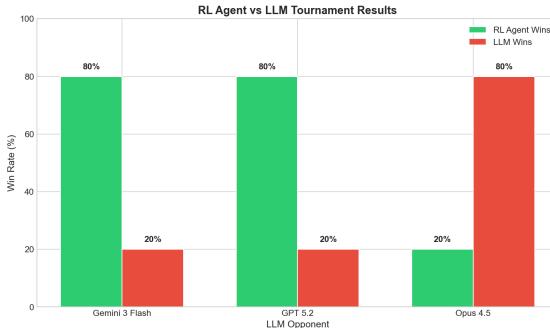


Figure 9: Tournament win rates between the trained DQN agent and selected LLM opponents.

Figure 9 provides a compact summary of the main comparative evaluation, indicating which LLM-based opponents are consistently outperformed by the learned policy and highlighting cases where the LLM exhibits a systematic advantage.

Opponent	RL wins	LLM wins	RL win rate
Gemini 3 Flash	80	20	80%
GPT 5.2	80	20	80%
Opus 4.5	20	80	20%

8.3 Qualitative analysis of LLM behavior

Careful observation of gameplay revealed systematic differences in decision-making.

8.3.1 Gemini 3 Flash and GPT 5.2

In qualitative inspection of gameplay, these models often selected immediately playable cards without clear evidence of longer-horizon hand management. This observation is anecdotal and may be sensitive to the prompt template and sampling configuration (mohammed840, 2026).

8.3.2 Opus 4.5

In contrast, Opus 4.5 displayed behaviors consistent with longer-horizon tactics, including deliberate hand management (preserving wild cards for flexibility), proactive color control (shifting to colors held in greater quantity), occasional defensive play (drawing instead of playing the last matching card), and actions consistent with anticipating inferred opponent constraints.

8.4 Interpretation: hypothesis on longer-horizon decision making

We hypothesize that the observed advantage of Opus 4.5 in our setting may reflect differences in longer-horizon decision making (e.g., preserving flexibility, controlling colors, or implicitly tracking opponent constraints). This interpretation is qualitative and requires further controlled study; in particular, it would benefit from (i) an explicitly specified prompt and sampling configuration for the LLM opponent, and (ii) quantitative ablations that isolate which information and planning components contribute to performance.

9 Discussion and Future Work

9.1 Summary of findings

Overall, we find that DQN is viable for Uno in the sense that the agent learns competitive strategies without hand-crafted rules. We also find that performance varies substantially across LLM-based opponents under our evaluation protocol, so opponent choice strongly affects observed win rates. The large-scale simulation analysis provides practical guidance for selecting design choices such as discounting and evaluation horizons, while the LLM results highlight the importance of careful reproducibility reporting for API-served models.

9.2 Limitations

LLM evaluations are API-dependent and therefore difficult to reproduce at scale. In addition, we restrict attention to a two-player variant (excluding multi-player dynamics), and self-play training may reduce robustness to diverse opponent policies.

9.3 Future work

Promising directions include integrating explicit planning (e.g., Monte Carlo tree search) with learned value functions, population-based training against diverse opponents, extension to multi-agent (3–4 player) settings, and improved opponent modeling. Related advances in policy optimization and self-play motivate these directions (Schulman et al., 2017; Silver et al., 2017).

10 Conclusion

We presented a complete pipeline for training, evaluating, and deploying a DQN agent for Uno. Our systematic approach—from 100,000-game statistical analysis through tournament-based training to LLM tournament evaluation—yields practical artifacts and insights.

We observe large differences in win rates across the evaluated LLM opponents under our protocol. Because LLM evaluation is API-dependent and model endpoints may change over time, these results should be interpreted as conditional on the exact access configuration, and they motivate further controlled experiments and hybrid approaches that combine reinforcement learning with planning.

References

Brown, Olivia, Diego Jasson, and Ankush Swarnakar (2020). *Winning Uno With Reinforcement Learning*. Course report, Stanford University. Accessed: 29 January 2026.

Hasselt, Hado van, Arthur Guez, and David Silver (2016). “Deep Reinforcement Learning with Double Q-learning”. In: *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 30. 1. DOI: 10.1609/aaai.v30i1.10295.

Hessel, Matteo et al. (2018). “Rainbow: Combining Improvements in Deep Reinforcement Learning”. In: *Proceedings of the AAAI Conference on Artificial Intelligence* 32.1. DOI: 10.1609/aaai.v32i1.11796.

Kaelbling, Leslie Pack, Michael L Littman, and Anthony R Cassandra (1998). “Planning and acting in partially observable stochastic domains”. In: *Artificial Intelligence* 101.1–2, pp. 99–134. DOI: 10.1016/S0004-3702(98)00023-X.

Mattel (n.d.). *UNO Instructions (Braille Rules)*. Web page. Accessed: 29 January 2026. URL: <https://shop.mattel.com/pages/uno-instructions>.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement learning”. In: *Nature* 518.7540, pp. 529–533. DOI: 10.1038/nature14236.

mohammed840 (2026). *policy-uno: Reinforcement learning agents for Uno*. GitHub repository. Accessed: 29 January 2026. URL: <https://github.com/mohammed840/policy-uno>.

Name, Author (2026). *Training a Deep Q-Network to Master Uno: A Comprehensive Study in Reinforcement Learning for Imperfect Information Games*. Unpublished manuscript (PDF included in project as `final79-2.pdf`).

OpenRouter (n.d.). *OpenRouter documentation*. Web documentation. Accessed: 29 January 2026. URL: <https://openrouter.ai/docs>.

Schaul, Tom et al. (2016). “Prioritized Experience Replay”. In: *arXiv preprint arXiv:1511.05952*. DOI: 10.48550/arXiv.1511.05952.

Schulman, John et al. (2017). “Proximal Policy Optimization Algorithms”. In: *arXiv preprint arXiv:1707.06347*.

Silver, David et al. (2017). “Mastering the game of Go without human knowledge”. In: *Nature* 550.7676, pp. 354–359. DOI: 10.1038/nature24270.

Wang, Ziyu et al. (2016). “Dueling Network Architectures for Deep Reinforcement Learning”. In: *arXiv preprint arXiv:1511.06581*. DOI: 10.48550/arXiv.1511.06581.

Zha, Daochen et al. (2019). “RLCard: A Toolkit for Reinforcement Learning in Card Games”. In: *arXiv preprint arXiv:1910.04376*.

A Reproducibility (Commands)

A.1 Environment setup

Source code and instructions are available in the accompanying repository (mohammed840, 2026).

```
# Clone repository
git clone https://github.com/mohammed840/policy-uno.git
cd policy-uno

# Install dependencies
pip install -e .

# Set API key for LLM evaluation (optional)
export OPENROUTER_API_KEY=your_key_here
```

A.2 Training and evaluation commands

```
# Run game statistics simulation (random baseline)
python -m rl.game_statistics --games 100000 --seed 42

# Train DQN
python -m rl.dqn_train --iters 10000 --games_per_iter 100 --seed 42

# Evaluate a saved run
python -m rl.eval --run_id <run_id> --games 1000 --seed 42

# Generate plots for a run
python -m rl.plots --run_id <run_id>
```

A.3 Web server

```
# Start the web application
python3 web/server.py

# Access at http://localhost:5000
```