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Abstract

We study Deep Q-Network (DQN) learning for Uno, an imperfect-information card game
with stochastic transitions and a variable legal action set. We introduce a fixed-dimensional state
encoding and a masked discrete action encoding, and train the agent using tournament-based
experience collection.

Using 100,000 random-play simulations, we report baseline game statistics and evaluate the
learned agent against API-served LLM opponents. Because LLM endpoints may change over
time, these results are conditional on the specific model identifiers and access configuration.

Principal finding: Our DQN agent achieves an 80% win rate against Gemini 3
Flash and GPT 5.2 in our evaluation harness, but only a 20% win rate against Opus
4.5.

Keywords: reinforcement learning; DQN; imperfect information; card games; evaluation; large
language models

1 Introduction and Motivation

1.1 The challenge of imperfect information games

Card games are a standard benchmark for decision-making under uncertainty. Unlike perfect-
information games (e.g., Chess, Go), Uno introduces: imperfect information (opponents’ hands
are hidden), stochastic transitions (shuffling and drawing induce randomness), variable action
spaces (legal actions change with the top discard card and the hand), and delayed rewards (local
actions may have long-term consequences).

This work builds on deep reinforcement learning methods for control (Mnih et al., 2015) and
subsequent improvements in stabilizing value-based learning (Hasselt, Guez, and Silver, 2016).
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1.2 Research objectives

We pursue four objectives: (1) statistical characterization of baseline play; (2) implementation and
training of a DQN agent; (3) comparative evaluation against random baselines and frontier LLMs;
and (4) deployment of an interactive web interface for demonstration.

1.3 Contributions

Our contributions include (i) a fixed-dimensional state encoding, (ii) tournament-based experience
collection, (iii) empirical comparisons versus LLM-based opponents, and (iv) a deployable system
design.

2 Problem setting and rules

2.1 Two-player Uno variant

We study a two-player version of Uno. The game is played with a standard Uno deck and proceeds
in alternating turns until one player plays their final card. Special action cards modify turn order
or force draws; wild cards allow the acting player to declare the next active color. For baseline rule
definitions we follow the official Uno instructions (Mattel, n.d.). Implementation note: Uno has
rule variants (e.g., stacking draw cards); therefore, any empirical results in this paper should be
interpreted with respect to the specific rules implemented in our codebase (mohammed840, 2026).

2.2 Learning problem formulation

We model the environment as a partially observable sequential decision problem: the agent observes
its private hand and public information (e.g., discard top card) but not the opponent’s hand
(Kaelbling, Littman, and Cassandra, 1998). We train the agent using episodic win/loss feedback as
the primary learning signal.

3 Related work

Deep reinforcement learning for control with value-based methods has been widely studied, including
the original DQN formulation (Mnih et al., 2015) and Double DQN (Hasselt, Guez, and Silver,
2016). Multiple stabilisation and performance extensions have been proposed, including dueling
networks (Wang et al., 2016), prioritised experience replay (Schaul et al., 2016), and combined
variants such as Rainbow (Hessel et al., 2018). For card-game research and benchmarking, RLCard
provides a general-purpose toolkit (Zha et al., 2019).
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Figure 1: Turns-per-game distribution from 100,000 simulated Uno games under uniformly random legal
play.

3.1 Reinforcement learning in imperfect information games (context)

A large body of work addresses imperfect information games using equilibrium-seeking methods.
Neural Fictitious Self-Play (NFSP) combines deep reinforcement learning with fictitious play to
approximate Nash equilibria in large games (heinrich2016nfsp). Counterfactual Regret Mini-
mization (CFR) and its variants compute approximate equilibria by minimizing counterfactual
regret over a game tree (zinkevich2007cfr). For poker, systems such as DeepStack and Libratus
combine regret minimization with learned value approximators and real-time subgame solving
(moravcik2017deepstack; brown2017libratus).

In this work we adopt a simpler value-based approach (DQN/Double DQN) with explicit legality
masking, and evaluate primarily against fixed opponents (random, heuristic, and API-served LLM
agents) rather than targeting equilibrium play.

A course report by Brown, Jasson and Swarnakar (Brown, Jasson, and Swarnakar, 2020) also explores
Uno with DQN and DeepSARSA in an RLCard-based environment, focusing on multi-player games
(3–5 players) and tournament-style experience collection.

4 Game Statistics from Large-Scale Simulations

4.1 Experimental setup

We simulated 100,000 games under uniformly random legal play. For each episode we recorded total
turns to termination, the starting player, and per-player counts of cards played and drawn. Our
implementation is compatible with standard card-game RL toolkits (Zha et al., 2019).

4.2 Game length distribution

Figure 1 visualizes the empirical episode-length distribution used to calibrate training horizons. The
pronounced right tail indicates that while many games finish quickly, a non-negligible fraction of
episodes are substantially longer, which motivates reporting both central tendency and tail statistics.

Summary statistics (random baseline):
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Statistic Value

Mean 46.5 turns
Median 37.0 turns
Mode 13 turns
Standard deviation 33.8 turns
Minimum 7 turns
Maximum 418 turns

4.3 Percentile analysis

Figure 2: Turns-per-game percentiles from 100,000 random simulations.

Figure 2 complements the histogram by summarizing the episode-length distribution at selected
quantiles, which is often more stable than single-point summaries such as the mean.

Percentile Turns Interpretation

25th 23 25% of games complete by this point
50th (median) 37 Half of games complete
75th 60 Three quarters of games complete
90th 90 Only 10% exceed this length
95th 113 Long games (5% tail)
99th 167 Extreme tail (1%)

These percentiles informed our choice of discount factor γ = 0.95, which appropriately weights
future rewards across typical game horizons.

4.4 Cumulative distribution function

Figure 3 provides a cumulative view of episode length; for example, the value at x turns corresponds
to the fraction of games that terminate within x turns.
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Figure 3: Cumulative distribution function (CDF) of turns per game from 100,000 simulations.

Figure 4: Game-length summary and first-player advantage analysis (random baseline).

4.5 First-player advantage

Figure 4 summarizes variability in episode length and reports the estimated advantage of moving
first under random play, which serves as a basic sanity check for the simulator and a reference point
for learned agents.

We observe a modest first-player advantage: first player wins 51.07% of games (51,068 / 100,000).

5 Deep Q-Network (DQN) Architecture

5.1 Overview and design rationale

Deep Q-Networks (DQN) learn a parametric approximation Q(s, a; θ) to the optimal action-value
function and are well suited to environments with (i) large or continuous observation spaces and (ii)
discrete actions (Mnih et al., 2015). In our setting, the observation is a fixed-length 420-dimensional
feature vector (Section 5), while the action set is a 61-way discrete encoding with dynamic legality
constraints (Section 6).

Two practical challenges are central in Uno: (a) stochasticity and partial observability (hidden
opponent hand and random draws), and (b) variable legal actions. To address (b), we explicitly
apply an action mask at decision time so that the policy never selects illegal actions.
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5.2 Theoretical foundation

DQN builds on the Bellman optimality equation for Markov decision processes:

Q∗(s, a) = E
[
rt+1 + γ max

a′
Q∗(st+1, a′) | st = s, at = a

]
. (1)

Given a transition tuple (st, at, rt+1, st+1), the one-step TD target used by DQN is

yt = rt+1 + γ max
a′

Q
(
st+1, a′; θ−)

, (2)

where θ− denotes parameters of a slowly-updated target network that stabilises learning (Mnih
et al., 2015).

We minimise the squared TD error over samples drawn from a replay buffer:

L(θ) = E(s,a,r,s′)∼D
[
(y − Q(s, a; θ))2

]
. (3)

Double DQN target (reduced overestimation). In standard DQN, the maximisation in yt

can introduce positive bias (“overestimation”). We therefore use the Double DQN decomposition,
selecting the greedy action under the online network but evaluating it with the target network
(Hasselt, Guez, and Silver, 2016):

yDDQN
t = rt+1 + γ Q

(
st+1, arg max

a′
Q(st+1, a′; θ); θ−

)
. (4)

5.3 Experience replay and target network

DQN uses two key stabilisation mechanisms (Mnih et al., 2015): Experience replay. Transitions
are stored in a replay buffer D and mini-batches are sampled uniformly during training; this breaks
short-term temporal correlations and improves sample efficiency.

Target network. A separate network with parameters θ− is updated periodically (every C gradient
steps) from the online network parameters θ, reducing non-stationarity of TD targets.

5.4 State representation

We encode the game state as a 420-dimensional feature vector structured as 7 planes of 60 features
each (4 colors × 15 card types). This representation is designed to be (i) fixed-dimensional, (ii)
permutation-invariant with respect to hand order, and (iii) directly aligned with Uno’s public and
private information.

Detailed encoding scheme:
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Figure 5: Distribution of the 420 state features across information categories.

Planes Features Description

0–2 180 Own hand card-count buckets (0, 1, 2+ copies)
3–5 180 Estimated opponent card counts (0, 1, 2+)
6 60 Current discard pile top card (one-hot)

Total 420 Complete state representation

Why bucketed counts? We use (0, 1, 2+) buckets rather than raw counts to keep the input
scale bounded and to emphasise strategically relevant distinctions (e.g., “have at least one playable
card type” versus “none”). In a two-player setting, a coarse opponent model (estimated counts) is
often sufficient to induce defensive play (e.g., holding wild cards) without requiring full belief-state
inference.

Opponent-estimation transparency. Planes 3–5 estimate opponent card distributions using
only publicly observable information (cards played, the number of draws, and deck-card conservation).
Our implementation performs this tracking in the encoder utilities (e.g., uno/encoding.py); critically,
it never accesses the opponent’s private hand contents (mohammed840, 2026).
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Figure 6: Breakdown of the 61-action space.

5.5 Action space and legality masking

The action space consists of 61 discrete actions representing all possible moves; illegal actions are
masked during action selection.

Action range Count Description

0–39 40 Number cards (0–9 × 4 colors)
40–43 4 Skip (4 colors)
44–47 4 Reverse (4 colors)
48–51 4 Draw Two (4 colors)
52–55 4 Wild (declare 4 colors)
56–59 4 Wild Draw Four (declare 4 colors)
60 1 Draw from deck

Let m(s) ∈ {0, 1}61 be a binary mask indicating action legality in state s. During greedy action
selection we compute

a∗ = arg max
a

(
Q(s, a; θ) + (1 − ma(s)) · (−∞)

)
, (5)

which guarantees that illegal moves are never chosen.

Masking in the TD target. In addition to masking during action selection, we also mask illegal
actions when computing the bootstrap term in the TD target. Concretely, before taking maxa′ over
next-state actions, we set the Q-values of illegal actions to a large negative constant so they cannot
become the maximizer (mohammed840, 2026).
# Next-state bootstrap with legality masking
next_q = q_target(next_states) # (B, 61)
next_q = next_q - (1 - next_legal_masks) * 1e9
next_q_max = next_q.max(dim=1)[0]

y = rewards + gamma * next_q_max * (1 - dones)
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5.6 Network architecture

Our Q-network maps 420 input features to 61 Q-values using a fully-connected multilayer perceptron.
This choice is appropriate because the observation is already a compact, hand-crafted vector rather
than an image.

Architecture summary. Input: 420 → Hidden: 512 (ReLU, Dropout 0.1) → Hidden: 512
(ReLU, Dropout 0.1) → Output: 61 (linear). Optimizer: Adam with learning rate 10−4.

Regularisation and optimisation details. Dropout provides mild regularisation against over-
fitting to early replay-buffer distributions. In addition, common DQN stabilisation practices include
gradient clipping and the use of a robust loss (Huber) (Mnih et al., 2015). (We report the MSE
objective above for clarity; in practice, replacing MSE with Huber is a drop-in change.)

5.7 Relation to common DQN extensions (context)

Several extensions to DQN can further improve stability and performance, including dueling networks
(Wang et al., 2016), prioritised experience replay (Schaul et al., 2016), and combined “Rainbow”
variants (Hessel et al., 2018). We retain a relatively simple architecture to keep the Uno pipeline
reproducible, and focus our improvements on state encoding, action masking, and tournament-style
experience collection.

6 Training Methodology

6.1 Tournament-based experience collection

Each training iteration aggregates experience over a tournament of N complete games, improving
stability and diversifying trajectories.

7 Experiments and reproducibility

7.1 Experimental protocol

All experimental results in this paper are conditional on the ruleset and experimental protocol
implemented in the accompanying codebase (mohammed840, 2026). In our implementation, training
uses fixed random-policy opponents in a two-player setting (the learning agent is always player 0),
and the reward is terminal only (+1 for win, −1 for loss, 0 otherwise).
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7.2 Metrics and reporting

We report (i) win rate and average reward for tournament-style evaluation, and (ii) summary
statistics of game length (turns per game) under random play. The code writes training metrics to
runs/<run_id>/metrics_train.csv and evaluation metrics to runs/<run_id>/metrics_eval.csv
(mohammed840, 2026).

7.3 Reproducibility checklist

Random seeds. Training and evaluation set seeds for NumPy and PyTorch; the environment is
also initialised with a seed parameter (mohammed840, 2026).

Artifacts. Each run stores config.json, per-iteration tournament logs (tournaments/dqn_iter_<i>.jsonl),
and plots under runs/<run_id>/plots/ (mohammed840, 2026).

LLM evaluation. OpenRouter opponents are specified by model slugs (e.g., google/gemini-3-flash-preview,
openai/gpt-5.2, anthropic/claude-opus-4.5) and queried with max_tokens=50 and temperature=0.1
in our adapter (mohammed840, 2026).

7.4 Hyperparameter configuration

Figure 7: Exploration rate decay and temporal-difference learning components (illustrative).

Figure 7 summarizes key training signals, in particular the exploration schedule that transitions
from broad exploration to more exploitative play as the replay buffer grows.
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Hyperparameter Value Rationale

Learning rate (α) 10−4 Stable learning without oscillation
Discount factor (γ) 0.95 Appropriate for ∼40-turn games
Initial epsilon (ε0) 0.95 High initial exploration
Epsilon decay (κ) 0.995 Gradual transition to exploitation
Minimum epsilon (εmin) 0.01 Maintain exploration
Batch size 256 Efficient GPU utilization
Replay buffer size 100,000 Experience diversity
Target update frequency 100 Stabilize TD targets
Games per iteration 100 Tournament size

7.5 Training dynamics

Figure 8: Average reward over 10,000 training iterations (100 games per iteration; 1,000,000 games total).

Figure 8 reports the evolution of training reward, which serves as a coarse indicator of policy
improvement and training stability over iterations. Over 10,000 iterations, the agent improves from
negative average reward to stable positive performance around +0.22.

Final evaluation versus random play (sanity check).

Metric Our model Reference report Difference

Win rate vs. random 61.8% 62.2% −0.4%
Average reward +0.236 +0.244 −0.008
Training games 1,000,000 ∼350,000 +185%
Algorithm Double DQN DQN —

The reference values are taken from the Uno reinforcement learning course report baseline (Brown,
Jasson, and Swarnakar, 2020).
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8 Evaluation: RL Agent vs. Large Language Models

8.1 Experimental design

We evaluate the trained agent in head-to-head tournaments against multiple LLM opponents accessed
via an API, focusing on win-rate as the primary metric.

Protocol. For each opponent configuration, we run 100 games (consistent with the win/loss
counts reported in Table 1). In our evaluation harness, the learning agent is player 0 and the
starting player is determined by the environment reset; we do not explicitly force alternation of
the starting player. The LLM opponents are accessed through an external API gateway; in our
implementation we use OpenRouter (OpenRouter, n.d.). We use the OpenRouter model identifiers
google/gemini-3-flash-preview, openai/gpt-5.2, and anthropic/claude-opus-4.5, queried
with temperature=0.1 and max_tokens=50 (mohammed840, 2026).

8.2 Tournament results

Figure 9: Tournament win rates between the trained DQN agent and selected LLM opponents.

Figure 9 provides a compact summary of the main comparative evaluation, indicating which LLM-
based opponents are consistently outperformed by the learned policy and highlighting cases where
the LLM exhibits a systematic advantage.

Opponent RL wins LLM wins RL win rate

Gemini 3 Flash 80 20 80%
GPT 5.2 80 20 80%
Opus 4.5 20 80 20%

8.3 Qualitative analysis of LLM behavior

Careful observation of gameplay revealed systematic differences in decision-making.
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8.3.1 Gemini 3 Flash and GPT 5.2

In qualitative inspection of gameplay, these models often selected immediately playable cards without
clear evidence of longer-horizon hand management. This observation is anecdotal and may be
sensitive to the prompt template and sampling configuration (mohammed840, 2026).

8.3.2 Opus 4.5

In contrast, Opus 4.5 displayed behaviors consistent with longer-horizon tactics, including deliberate
hand management (preserving wild cards for flexibility), proactive color control (shifting to colors
held in greater quantity), occasional defensive play (drawing instead of playing the last matching
card), and actions consistent with anticipating inferred opponent constraints.

8.4 Interpretation: hypothesis on longer-horizon decision making

We hypothesize that the observed advantage of Opus 4.5 in our setting may reflect differences in
longer-horizon decision making (e.g., preserving flexibility, controlling colors, or implicitly tracking
opponent constraints). This interpretation is qualitative and requires further controlled study; in
particular, it would benefit from (i) an explicitly specified prompt and sampling configuration for
the LLM opponent, and (ii) quantitative ablations that isolate which information and planning
components contribute to performance.

9 Discussion and Future Work

9.1 Summary of findings

Overall, we find that DQN is viable for Uno in the sense that the agent learns competitive strategies
without hand-crafted rules. We also find that performance varies substantially across LLM-based
opponents under our evaluation protocol, so opponent choice strongly affects observed win rates.
The large-scale simulation analysis provides practical guidance for selecting design choices such
as discounting and evaluation horizons, while the LLM results highlight the importance of careful
reproducibility reporting for API-served models.

9.2 Limitations

LLM evaluations are API-dependent and therefore difficult to reproduce at scale. In addition, we
restrict attention to a two-player variant (excluding multi-player dynamics), and self-play training
may reduce robustness to diverse opponent policies.
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9.3 Future work

Promising directions include integrating explicit planning (e.g., Monte Carlo tree search) with learned
value functions, population-based training against diverse opponents, extension to multi-agent (3–4
player) settings, and improved opponent modeling. Related advances in policy optimization and
self-play motivate these directions (Schulman et al., 2017; Silver et al., 2017).

10 Conclusion

We presented a complete pipeline for training, evaluating, and deploying a DQN agent for Uno. Our
systematic approach—from 100,000-game statistical analysis through tournament-based training to
LLM tournament evaluation—yields practical artifacts and insights.

We observe large differences in win rates across the evaluated LLM opponents under our protocol.
Because LLM evaluation is API-dependent and model endpoints may change over time, these results
should be interpreted as conditional on the exact access configuration, and they motivate further
controlled experiments and hybrid approaches that combine reinforcement learning with planning.
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A Reproducibility (Commands)

A.1 Environment setup

Source code and instructions are available in the accompanying repository (mohammed840, 2026).
# Clone repository
git clone https://github.com/mohammed840/policy-uno.git
cd policy-uno

# Install dependencies
pip install -e .

# Set API key for LLM evaluation (optional)
export OPENROUTER_API_KEY=your_key_here

A.2 Training and evaluation commands

# Run game statistics simulation (random baseline)
python -m rl.game_statistics --games 100000 --seed 42

# Train DQN
python -m rl.dqn_train --iters 10000 --games_per_iter 100 --seed 42

# Evaluate a saved run
python -m rl.eval --run_id <run_id> --games 1000 --seed 42

# Generate plots for a run
python -m rl.plots --run_id <run_id>

A.3 Web server

# Start the web application
python3 web/server.py

# Access at http://localhost:5000
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